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ABSTRACT 
 

Several research studies have produced mathematical models that predict the safety 
impacts of selected access management techniques.  Since new models require substantial 
resources to construct, this study evaluated five existing models with regard to their applicability 
to locations other than the one for which they were designed.  The predictive power of the 
models was assessed using three sites in Virginia.  The study also considered the practical 
aspects of applying the models in Virginia to estimate the likelihood that necessary data are 
available, the number of computations required to apply the models, the simplicity of the 
rationale underlying the models, and the sensitivity of the models to inputs. 

 
The applicability of the models was wide ranging.  Without site-specific adjustments, the 

average percent error of the models ranged from 34 to a few hundred percent.  With simple site-
specific adjustments, the error ranged from 27 to 29 percent.  Because some of the models were 
developed for a specific site or were intended to be used only with site-specific adjustments, 
these error percentages indicate only the extent to which the models are transferable with respect 
to estimating crashes, not the performance of the models themselves. 

 
The wide variation in applicability was due to discrepancies in data definitions, the 

availability of data, the structure of the model, and the assumptions used.  Recommendations 
were developed for using the models in practice and for understanding their limitations.  Two 
principal conclusions were as follows:  (1) existing models (with minor adjustments for some) 
can predict crashes as a function of access within �34 percent of the actual number, and (2) 
some of the models are simple enough to be used in practice.
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INTRODUCTION 
 

Access management has been loosely described as a strategy that maximizes capacity and 
safety, predominantly for collector and arterial facilities.1  In fact, however, access management 
comprises a host of disparate techniques.  Koepke and Levinson wrote that “access management 
is the process that provides (or manages) access to land development while simultaneously 
preserving the flow of traffic on the surrounding road network in terms of safety, capacity, and 
speed.”2  Haas et al. defined access management as a function of unsignalized driveway 
spacing.4  Brown et al. reported that access control is thought by some to be “all techniques 
intended to minimize the traffic interference associated with commercial driveways.”5  

 
Access management requires an explicit tradeoff between two competing goals:  to 

maximize throughput and to maximize access.  The ideal balance between access and efficiency 
depends on the intended function of the roadway and the perspective of the user.  Since each user 
is different, decisions regarding access control can be controversial.  Accordingly, agencies 
responsible for managing arterial roadways are interested in acquiring better methods to quantify 
the safety impacts of access management. 

 
Gluck et al. provided a “shopping list” of 100 access management options, including 

using different median configurations, providing frontage roads, providing minimum distances 
between interchanges and adjacent driveways, and eliminating left turns.3  Policy implications 
include using access codes (spacing of driveways and signals), developing zoning regulations, 
purchasing access rights, and establishing setbacks from interchanges and intersections.  Design 
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tactics include relocating and consolidating driveways, improving operations for signals, and 
eliminating U-turns.    

 
No management strategy is painless, and officials need to be able to justify their decision 

to undertake a particular strategy.  Most, if not all, studies have found that increasing the number 
of access points increases the risk of crashes; Preston et al. argued that crash history is affected 
by access density but not traffic volume.6   Bowman and Rushing noted that reducing conflict 
points along a corridor reduces crash risk.7   Because reducing crash risk is an important 
objective of access management, there is an interest in models that can estimate this reduction.  
One access management factor—traffic signal density and operation—merits special attention.  
Although many researchers maintain that increasing access density will increase the likelihood of 
crashes, the strength of this association must be articulated.   

 
 
 

PROBLEM STATEMENT 
 
To quantify the safety benefits of particular access management strategies, especially 

controversial strategies such as reducing signal density, administrators need to know what 
methods can be used, how well the methods will work in various real-world situations, and how 
the methods can be applied in a timely and cost-effective manner.  A method that is too 
cumbersome to deploy or has not been validated is not likely to be useful.  Hence, user-friendly 
techniques to evaluate access management options must be identified or developed.  

 
 
 

PURPOSE AND SCOPE 
 

 The purpose of this research was to identify and evaluate quantitative techniques for 
quantifying the safety impacts of various access management strategies as a result of changing 
the number of signals for a corridor.  The scope of the research was limited to models suggested 
in the literature since developing new models requires substantial resources. 
 
 This study assessed the transferability of models to locations other than those for which 
they were developed.  Comments made about the models reviewed in this study reflect only this 
assessment; they do not constitute an evaluation of the performance of the models for any other 
factor.  
 
 

METHODS 
 
 The case-study approach was used.  Specifically, three tasks were performed in sequence 
to achieve the study objectives:  
 

1. Mathematical models to quantify the safety impacts, i.e., predict crashes, of access 
management strategies were identified through a review of the literature, and five 
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models were selected that were in the public domain, predicted either crash rates or 
the number of crashes, and appeared feasible to apply in Virginia.  

 
2. Case study corridors were selected for analysis, and appropriate data were collected.   

Corridors were selected on the basis of three key criteria:  dramatic change in number 
of signals, few geometric changes, and available historic data.  Appropriate data 
included operational, geometric, and crash profiles of the corridor.   

 
3. The selected models were applied to the case study corridors and compared.  To test 

the suitability of the models for data sets other than the ones for which they were 
developed, they were first applied without modification.  Then, where appropriate, 
they were applied by fitting them to the conditions on the case study corridors.  The 
models were compared on the basis of accuracy, sensitivity, and ease of application. 

  
 
 

RESULTS 
 

Identification of Methods for Quantifying Safety Impacts 
  

The literature offers several techniques for quantifying the impacts of access 
management:  most are some variant of regression although one technique uses a proprietary 
software package.  
 
 
Regression Analysis 
 

Most methods focus on the use of linear regression analysis.  Regression analysis is a 
statistical tool that can be used to explain the relationship between an independent variable (such 
as the number of signals per mile) and dependent, or explanatory, variables (such as the number 
of crashes).  That is, regression models can be used to identify which variables explain, or do not 
explain, the variability in the independent variable.  In a study in Lee County, Florida, distance 
between signals and number of accidents per million vehicle miles were used to show how 
regression analysis illustrates the relationship between signal density and accident rates.8  In a 
study of the design of signalized and unsignalized intersections, control of diverging and left-turn 
maneuvers, and median treatment as access management techniques, Brown et al. developed 
regression models (see Appendix A) to estimate the numbers of total crashes, property damage 
only (PDO) crashes, and severe crashes.5    

 
In their attempts to quantify the impact of driveway spacing and turning volume on 

safety, Haas et al. used the number of evasive maneuvers observed during field studies at 22 sites 
as the dependent variable.4  An evasive maneuver was defined as the brake lights of a through 
vehicle turning on as the result of the lead vehicle making a right turn (both vehicles would be in 
a lane that allowed through traffic and right turns into unsignalized driveways).  The data were 
fit to a probability analysis and a linear regression analysis to estimate the percentage of right-
lane-though vehicles that would be affected as a function of driveway spacing and right-turning 
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volume.  Necessary field data included median type, operating speed, number of lanes and lane 
type, distance of each site from the upstream and downstream signal, and detailed right-lane 
volume counts (number of through vehicles and number of vehicles turning into the right lane). 
 

A potential advantage of regression models is the ease with which they can be used to 
estimate crash rates.  A potential disadvantage is their aggregate nature in that they look at an 
entire corridor macroscopically rather than simulating the interactions of individual vehicles, 
thus, they may not be the best tool to identify the impacts of changes at a specific location.  
Another drawback is that some regression models  use only vehicle miles traveled (VMT) rather 
than total vehicles entering an intersection.3  A question unanswered by this effort is whether 
simulation techniques that examine the individual vehicle behaviors at each signal would address 
these concerns. 
 
 
Software Programs 
 

TRAF-SAFE is a commercially available software package developed to evaluate the 
safety impacts of various access management strategies.  After meeting with the developer of 
this software, the authors chose not to evaluate the package as part of this research project 
because heavy involvement on the part of the developer would have been been required.  
Interested readers, however, may learn more about this model from the TRAF-SAFE 
Corporation at http://www.traf-safe.com. 

 
 

Selection of Crash Prediction Models to Be Analyzed 
 

Five model formulations that employ signalized or unsignalized access density were 
identified in the literature and selected for evaluation.  The formulations for the models are 
presented in Appendix A, data assumptions are shown in Appendix B, and examples of how to 
apply the models are available from the authors and are also presented in the literature..  All 
models include as a dependent variable either crash rate or number of crashes.  Independent 
variables may include average annual daily traffic (AADT), length of corridor segment, and 
duration of time.   
 

The models may be summarized as follows: 
 

• Model 1 is a multivariate regression model that estimates absolute crashes as a 
function of total number of signalized and unsignalized access points, percentage of 
signalized access points, presence of a shoulder, and type of median.  It was 
developed by Brown et al. in 1998 as a tool to evaluate access control on high-speed 
urban arterials.5 

 
• Model 2 consists of two submodels.10  The first is a multivariate regression model that 

estimates absolute crashes between signals as a function of total number of signalized 
and unsignalized access points, number of residential driveways, percentage of 
signalized access points, median type, land use, whether residential parking is 



 5

allowed, and proportion of PDO crashes.  It was developed by Bonneson and McCoy 
in 1997 to determine the effect of median treatment on urban arterial safety.9  The 
second submodel estimates absolute crashes at signals based on the number of 
vehicles entering each signalized intersection.  It was developed by Persaud and 
Nguyen in 1998 as a disaggregate safety performance model for signalized 
intersections on provincial roads in Ontario.10 Although the submodels were 
developed independently, they appear suitable  as a crash prediction technique for 
corridors if used together.  The submodels were combined to allow a coherent 
approach for estimating crashes along an entire corridor.  The first submodel 
estimates only crashes between signals, and the second estimates only crashes at 
signals.   

 
• Models 3a, 3b, and 3c consist of graphs and  tables  from a study by Gluck et al. of 

the impacts of access management techniques.3  They all predict relative changes in 
crash rates as the dependent variable.  Model 3a uses median type and total number of 
access points, Model 3b uses median type and number of signals, and Model 3c uses 
only number of signals and number of unsignalized access points.  Model 3 was 
intended for application only in conjunction with existing crash data.   

 
• Model 4 is a linear regression model that estimates crash rates as a function of speed, 

number of access points, left-turn lane availability, spacing between driveways, and 
variance in driveway spacing.  It was developed by White and Garber in 1995 in a 
study to develop guidelines for commercial driveway spacing on urban and suburban 
arterial roads.11  The model was modified slightly, as shown in Appendix A, in order 
to use it with the available data. 

 
• Model 5 is a univariate regression model that estimates crash rates as a function of 

total number of signalized and unsignalized access points.  It was developed by 
Preston et al. in 1998 in a study of statistical relationship between vehicular crashes 
and highway access.6  There are 11 formulations of the model, each dependent on a 
different type of roadway facility. 

 
 

Selection of Case Study Corridors and Collection of Data  
 

Selection of Corridors 
 

Three corridors were selected for analysis.  These corridors were selected because the 
number of traffic signals increased substantially over a 10-year period, as noted by VDOT 
district engineering staff.  Since the corridors have a fixed length, the increase in signal density 
resulted in a corresponding decrease in signal spacing—that is, the average distance between 
signals has become shorter over time.  In addition, historical data were available for the 
corridors, and few geometric changes had occurred during the analysis period.   
 

The three corridors were: 
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1. Corridor I, a 5-mi (8-km) section of Route 147 (Huguenot Road) between Route 150 
(Chippenham Parkway) and U.S. 60 (Midlothian Turnpike) in Richmond and 
Chesterfield County (see Figure 1).  Huguenot Road is a four-lane suburban arterial 
passing through commercial and residential land use areas.  The average daily traffic 
(ADT) has varied between approximately 29,000 and 43,000, depending on the year 
and section.  

 
2. Corridor II, a 2.5-mi (4-km) section of Route 250 between Greenville Avenue and 

Sanger’s Lane in Staunton and Augusta County (see Figure 2), with ADTs between 
20,000 and 27,000.  The corridor is a four-lane suburban arterial. 

 
3. Corridor III, a 7-mi (11.2-km) section of Route 17 in York County between the 

Newport News City Line and Warwick and Cook Road (see Figure 3).  Route 17 
functions as a four-lane divided suburban arterial; the Virginia Department of 
Transportation (VDOT) engineer noted that before volumes and the number of access 
points had increased, Route 17 could be classified as a suburban multilane highway.  
ADTs for Corridor III ranged from about 35,000 to 39,000.   

 
 
Collection of Data 

 
Operational, geometric, and crash profiles of the corridor were obtained from several data 

sources for the period 1990 through 1999.  These sources included the VDOT Highway Traffic 
Records Information System (HTRIS); the Chesterfield County Department of Planning; the 
Chesterfield County Transportation Department; the City of Staunton Traffic Engineering 
Department; the York County Planning Office; the traffic engineering sections in VDOT’s 
Richmond, Hampton Roads, and Staunton districts; and VDOT’s Williamsburg Residency.  
Additional data were obtained through site visits; videotapes of the study sites; and meetings 
with VDOT, county, and city personnel. 

 
Operational characteristics include traffic volumes and turning movements in each lane.  

Geometric characteristics include number of lanes, channelization, and signal density.  Crash 
characteristics include number, collision type, and severity of crashes.  Interpolation of data was 
necessary in some instances because of the historical nature of the study.  By using multiple data 
sources, the investigators were able to synthesize a data set that was sufficiently complete for the 
needs of this study for the corridors.  Appendix B gives examples of two types of data 
interpolation required.  The estimation of unsignalized driveways for time periods past, as 
explained in Appendix B, would have been easier had access permit data been electronically 
searchable and understandable.   
 

Table 1 provides an overview of the crash history and a summary of the data for each 
corridor: 
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Figure 1.  Diagram of Corridor I: Route 147 (Richmond, Virginia) (1 mi = 1.6 km)
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Figure 2.  Diagram of Corridor II: Route 250 (Staunton, Virginia) (1 mi = 1.6 km) 
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Figure 3.  Diagram of Corridor III: Route 17 (York County, Virginia) (1 mi = 1.6 km) 
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1. Corridor I has two major segments.  The southern segment―Route 60 to Polo 
Parkway―has two sections with a two-way left-turn lane (TWLTL) and three 
sections with a median treatment.  The northern segment―Polo Parkway to Route 
150―has one section with a TWLTL treatment, four sections with a median 
treatment, and one section that is undivided.   
 

2. Corridor II has two major segments, an older portion with a TWLTL and a new 
section with raised curb medians.   
 

3. Corridor III is one segment because geometric conditions were relatively constant.  
 
As may be inferred from the table, if each segment and each time period is considered a 

discrete case, 24 possible cases exist for which various models could be applied.   
 

Table 1.  Data Summary for Case Study Corridors 
 
 
Major 
Segment 

 
 
 
Case 

 
Time Period 
(Based on Signal 
Installation) 

 
 
Duration 
(Yr) 

No. 
Unsignalized 
Access Points 

 
 
No. 
Signals 

 
 
 
ADT 

 
No. Actual 
Crashes 

 
 
Crash Ratea 

Corridor I: Route 147 (Richmond) 
1 01/1/90-04/19/91 1.3 27 1 29,411 54 245 (0)  
2 04/20/91-06/19/91 0.2 26 2 39,000 6 160 (-35) 
3 06/20/91-05/23/95 3.9 26 3 27,879 153 242 (1) 

Route 60 
to Polo 
(1.58 mi) 

4 05/24/95-12/31/98 3.6 24 4 35,739 185 249 (2) 
5 01/01/90-11/5/91 1.8 38 1 33,249 79 103 (0)  
6 11/6/91-02/4/92 0.2 36 2 41,000 12  94  (-9) 
7 02/5/92-11/14/92 0.8 35 3 41,537 48 119 (16)  
8 11/15/92-08/15/96 3.8 33 4 41,069 246 128 (24) 

Polo to Route 
150 
(3.42 mi) 

9 08/16/96-12/31/98 2.4 31 5 43,235 213 166 (61) 
Corridor II: Route 250 (Staunton) 

10 1/1/90-8/31/95 5.7 80 1 19,988 49 69 (0)  
11 9/1/95-8/31/96 1.0 78 2 23,000 23 160 (132) 
12 9/1/96-8/31/98 2.0 76 3 26,000 71 219 (217) 

U.S. 11 to 
Frontier 
Avenue  
(1.71 mi) 

13 9/1/98-12/31/99 1.3 74 4 27,000 42 187 (171) 
14 1/1/90-10/31/95 5.8 4 1 23,000 72 165 (0) 
15 9/1/96-8/31/98 3.1 2 2 25,000 62 248 (50) 

Frontier to 
Sanger’s Lane 
(0.89 mi) 

16 12/1/98-12/31/99 1.1 0 3 26,000 42 458 (178) 
Corridor III: Route 17 (York) 

17 1/1/90-7/31/92 2.6 210 10 37,792 423 164 (0) 
18 8/1/92-2/28/95 2.6 221 11 34,943 428 179 (9) 
19 3/1/95-12/31/96 1.8 226 12 38,303 325 174 (6) 
20 1/1/97-2/28/97 0.2 230 13 39,303 24 143 (-13) 
21 3/1/97-10/31/97 0.7 230 14 39,303 145 207 (27) 
22 11/1/97-2/28/98 0.3 233 15 39,303 72 210 (28) 
23 3/1/98-10/31/98 0.7 233 16 39,303 149 213 (30) 

Warwick/ 
Cook Road to 
Newport News 
North City 
Limit 
(7.3 mi) 
 

24 11/1/98-12/31/99 1.2 235 17 39,303 233 192 (17) 
1 mi = 1.6 km. 
aThe percent relative change from the base year is in parentheses. 
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With the possible exception of Corridor III, the crash rates are not strongly correlated 
with signal density or number of access points.  For example, Cases 1 and 4 have comparable 
crash rates of 245 and 249 yet the latter has 4 times as many signals.  However, from 1990 to 
1998, Corridor I had relatively few access points. Gluck et al. categorized corridors by number of 
access points per mile, where the lowest category for urban areas was less than 20 points per 
mile (32 points per kilometer).  The cases in Corridor I are in this lowest category, where the 
portion of the corridor with the highest signal density still has a relatively low overall density.  
Corridors II and III have a wider range of access densities. 

 
 The fact that Corridor III has more unsignalized access points than Corridors I or II 
reflects the fact that when the investigators sought corridors, few corridors met all three key 
criteria (i.e., dramatic change in number of signals, few geometric changes, and available historic 
data).  
 

Application of Crash Prediction Models to Case Study Corridors 
and Comparison of Their Performance 

 
As stated previously, to test the suitability of the models for data sets other than the ones 

for which they were developed, they were first applied without modification.  Then, where 
appropriate, they were applied by fitting them to the conditions on the case study corridors.  The 
models were compared on the basis of accuracy in predicting the number of crashes, sensitivity, 
and ease of application. 

 
 
Accuracy 
 
Without Modification 
 

Table 2 indicates the predictions of each model for each case.  As an example, for Case 1, 
Model 3c came the closest to predicting the actual number of crashes, i.e., 54, with a prediction 
of 61 crashes. 

 
Table 3 shows the percent error for each model as applied to each case.  The percent error 

for each case is computed as: 
 

Number of actual crashes - Number of predicted crashes
Number of actual crashes

 

 
The average percent error (APE) is the average of these errors.  If a negative number of crashes 
is predicted, the negative number is subtracted from (i.e., its absolute value is added to) the 
number of actual crashes.  Although some of the periods were very short, a comparison of the 
errors in Table 3 with the period durations in Table 1 indicated that shorter periods were not 
necessarily associated with larger errors than longer periods.  For example, although Cases 2 and 
6, which had the shortest periods of 0.2 year, showed larger errors than the other cases for their 
respective segment for Models 3, 4, and 5, the key determinant of the error was the model 
employed, not the length of the period. 
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Table 2.  Number of Predicted Crashes for Each Model  
 
No.  Predicted Crashes 

 
Major 
Segment 

 
 
Case 

No. 
Actual 
Crashes Model 1 Model 2 Model 3a Model 3b Model 3c Model 4 Model 5 

Corridor I: Route 147 (Richmond) 
1 54 20 25 92 73 61 -19 103
2 6 4 6 16 12 10 -3 18
3 153 79 150 281 209 172 -32 311

Route 60 to 
Polo 
(1.58 mi) 

4 185 110 211 331 463 320 -55 366
5 79 59 63 252 239 207 -530 288
6 12 11 10 42 40 34 -92 48
7 48 39 42 133 125 107 -289 153
8 246 213 240 638 600 500 -1447 732

Polo to Route 
150 
(3.42 mi) 

9 213 161 189 426 400 327 -1010 489
Corridor II: Route 250 (Staunton) 

10 49 96 239 484 209 240 520 433
11 23 21 50 98 42 48 106 88
12 71 50 112 222 96 105 239 199

U.S. 11 to 
Frontier 
Avenue  
(1.71 mi) 13 42 37 96 154 132 144 165 138

14 72 72 110 116 120 111 -452 125
15 62 96 88 67 142 79 -260 72

Frontier to 
Sanger’s 
Lane 
(0.89 mi) 

16 42 81 40 24 52 27 -95 26

Corridor III: Route 17 (York) 
17 423 292 422 1344 1463 1422 1156 1574
18 428 281 451 1290 1353 1338 1145 1496
19 325 227 354 1026 1056 1064 925 1185
20 24 21 34 94 95 96 86 108
21 145 88 145 391 396 398 356 450
22 72 44 74 192 194 195 177 222
23 149 92 157 398 396 405 362 455

Warwick/ 
Cook Road to 
Newport 
News North 
City Limit 
(7.3 mi) 

24 233 161 282 693 688 705 636 796
1 mi = 1.6 km. 
 
 
 

Table 4 summarizes these statistics for the application of each model to the study 
corridors.  The best performing models at first glance are Models 1 and 2.  Yet, it is not 
immediately clear whether differences in performance are statistically significant.   

 
Normally, the t test is used to determine if the differences between values are statistically 

significant.  Using the APE summarized in Table 4 and detailed in Table 3, the t test statistic is 
computed as:  
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Table 3.  Error Computations as Percentage of Actual Values (Rounded to Nearest Percentage) 
Major 
Segment 

 
Case 

 
Model 1 

 
Model 2

 
Model 3a 

 
Model 3b 

 
Model 3c 

 
Model 4 

 
Model 5 

Corridor I: Route 147 (Richmond) 
1 63 54 70 35 12 135 91
2 33 7 165 108 70 145 199
3 48 2 83 37 12 121 103

Route 60 to 
Polo 
(1.58 mi) 

4 41 14 79 150 73 130 98
5 26 21 219 203 162 771 265
6 8 14 250 232 184 864 300
7 18 13 178 161 122 702 219
8 13 2 159 144 103 688 198

Polo to Route 
150 
(3.42 mi) 

9 24 11 100 88 54 574 129
Corridor II: Route 250 (Staunton) 

10 97 387 889 326 390 962 784
11 9 116 328 84 109 360 283
12 30 58 213 35 49 237 180

U.S. 11 to 
Frontier 
Avenue  
(1.71 mi) 13 12 129 267 214 243 294 228

14 0 53 62 66 54 727 74
15 55 41 8 129 27 519 16

Frontier to 
Sanger’s Lane 
(0.89 mi) 16 94 5 42 23 35 327 37
Corridor III: Route 17 (York) 

17 31 0 218 246 236 173 272
18 34 5 202 216 213 167 250
19 30 9 216 225 227 185 264
20 12 40 293 297 300 256 351
21 39 0 170 173 175 145 210
22 39 2 166 169 171 146 208
23 39 5 167 166 172 143 205

Warwick/ 
Cook Road to 
Newport 
News North 
City Limit 
(7.3 mi) 

24 31 21 197 195 203 173 242
1 mi = 1.6 km.  The developers of Model 3 noted that “Where there is an actual crash rate available for the base 
condition, it may be factored by this relative change to project the future crash rate with the changed conditions. In 
the absence of an actual crash rate, the approach in NCHRP Report 420 would result in an estimate of the relative 
change in crash rate, and not the crash rate itself.”14  

 
 

Table 4.  Summary Statistics for Each Model 
Statistic Model 1 Model 2 Model 3a Model 3b Model 3c Model 4 Model 5 

Root mean square error 59 46 350 362 348 552 426
Mean absolute error 43 26 237 227 208 389 281
Average percent error (%) 34 42 198 155 141 373 217
Weighted percent error (%) 31 57 186 126 114 377 192
 
 
where nx and ny are the number of observations for Models 1 and 2, respectively, and X and Y are 
the mean values of the APE.  The value of the t statistic shown here is compared to the Student’s 
t distribution t(α/2; nx + ny-2), where α takes on a value of 0.05 for a 95 percent confidence 
interval.  The t statistic for the APE when comparing Models 1 and 2 is 0.45, which is less than 
t(0.025;48) = 2.021.  Thus, based on the APE, Model 1 is not significantly more accurate than 
Model 2 at the 95 percent confidence interval when using the t test.  The t test, however, assumes 
a normal distribution and similar variances (although some have argued that the condition of 
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equal variances is not critical).  The ratio of the variances of the APE from Models 1 and 2 are 
greater than the F statistic of F(0.05;23,23) = 2.01, meaning that the hypothesis that the 
variances are equal should be rejected.15  Consequently, although the t test does not show a 
significant difference, it is not necessarily appropriate for these dissimilar distributions if one 
holds the belief that variances must be similar for the t test to be valid.  
 

Because the variances of the two samples are significantly unequal as measured by the F 
statistic, a statistical test that does not assume equal variances is needed.  The Mann-Whitney U 
test fulfills this criterion, where the U statistic is computed as 
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where Tx and Ty are the rank sums for samples X and Y, which, in this case, are the APE for 
Models 1 and 2.  For cases where both the x and y samples are greater than 10, Mendenhall 
pointed out that a modified application is feasible, where the test statistic Z is compared to the 
Zα/2 statistic for a two-tailed test.16  Thus, if Z is found to be greater than Zα/2, then the differences 
are statistically significant.  In this case, for a 95 percent confidence interval, Zα/2 = 1.96, and Z is 
computed as  
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The results show, again, that the difference in the predictions by Models 1 and 2 is not 

statistically different.  Although Model 2 has a higher APE than Model 1 (see Table 4), a big part 
of this discrepancy derives from a couple of cases where Model 2 has prediction errors of several 
hundred percent.  When Model 1 is compared with the next best performing model (Model 3c), 
the difference in performance is statistically significant.  Thus, Model 1 does outperform the 
remaining models except for Model 2.  The confidence bars in Table 5 illustrate the performance 
rankings of the models tested.  For example, there is no significant difference among Models 3a, 
3b, and 3c.  Although Model 3c is significantly better than Model 5, Models 3a and 3b are not.  
A version of the t test is available that does not presume equal variances; such a version can be 
used in lieu of the Mann-Whitney U test.   

 
 

Table 5.  Accuracy of Models Without Modificationa 
Accuracy Model 1 Model 2 Model 3c Model 3b Model 3a Model 5 Model 4 
Without 
modification 

Highest -------------------------------------------------------------------------------  Lowest 
 
 
 
     
 
 

        aA horizontal arrow indicates no significant difference. 
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Figure 4 shows the ratio of the number of crashes estimated by each model divided by the 
number of crashes for the 24 cases.  Ideally, a model should have a ratio of 1.0.  Models 1 and 2 
were the closest to this value, ranging between 0.2 and 2.0 (except for a few cases where the 
spike of Model 2 exceeded the upper range).  Some of the models were similar in their response 
to particular sites.  Model 4 is not shown because of the computation of negative values.  
 

In summary, without modification, Models 1 and 2 outperformed the other models in 
terms of predicting the number of crashes. 

 

 
 
Figure 4.  Ratio of Number of Crashes Estimated by Each Model Divided by Number of Crashes for the 24 
Cases.  Model 4 is not shown because of the computation of negative values.   
 
 
With Modification 
 

One way to increase the accuracy of a model is to fit it to a particular site and then use the 
revised model for future predictions.  To test the feasibility of adjusting the models for a specific 
site, Models 3 and 5 were selected for further investigation.  Unlike Model 1, they did not yield 
tolerable error rates without site-specific adjustment, and unlike Model 2, it was easier to make  
adjustments to the model because Models 3 and 5 have simpler forms that require only one 
equation for each corridor computation.  Using Case 1 as a baseline, the coefficients for 
unsignalized streets and signalized streets were modified such that Model 5 predicted the number 
of crashes perfectly for the site.  For Model 5, the coefficient for the number of access points was 
multiplied by a number between 0.00235 and 0.325 to replicate base year conditions.  For 
Models 3a, 3b, and 3c, as suggested by Gluck et al.,3 the ratio of future computed accident rates 
to base year computed accident rates, as computed by the models, was used along with actual 
base year accident rates.  Then, the revised model was applied to the remaining 23 cases.  In 
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other words, the test was whether “fitting” a model to a base year case could substantially 
improve its performance.  The results were that Model 5 had an APE of 85, which was better 
than the APE of 217 without modification shown in Table 4.  If the analyst had been lucky 
enough to select a different case for the calibration case—say Case 5—then the APE would have 
dropped to 37.  The practical application of this exercise is significant:  a transportation engineer 
can take a model from elsewhere, modify it slightly to fit base year conditions at a particular site, 
and then apply the model to future forecasts.  The APE does not include the base year 
computation, which, of course, has a zero percent error. 
 

Realistically, however, an analyst would not have this hindsight:  he or she would apply 
the models and then calibrate them based on the present-day conditions shown in Sites 1 and 5, 
respectively.  Hence, making a universal change to the models based on only one site can 
improve performance substantially, but it will not guarantee that the model will perform 
acceptably, as shown by the potential error rate of 85 percent. 
 

A more labor-intensive alternative would be to adjust the model based on each corridor 
segment.  For example, when applying Model 5 to the first segment, the model could be adjusted 
based on Site 1 and then used for Sites 2, 3, and 4.  Then, when applying the model to the second 
segment, it could be adjusted based on Site 5 and then applied to Sites 6, 7, 8, and 9.  In essence, 
this approach means using present-day conditions at each site to fit the model perfectly to the 
base year.  For Model 5, this initially was done by multiplying the number of access points by an 
adjustment factor to reproduce the number of crashes for a base year, which dropped the APE to 
27.  Gluck et al.3 suggested a different approach, whereby the model is left intact but the 
expected change in crash rates is multiplied by the current crash rate; this yielded APEs of 27 to 
29 for Model 3 and 27 for Model 5, as shown in Table 6.  
 

Although this approach is probably too labor intensive for all corridors in an agency’s 
jurisdiction, it is practical for key corridors where increases in access are the subject of 
contentious debate.  Thus, in practice, an analyst could apply Model 3 or 5 to a particular 
corridor, adjust the model weights or application to replicate base year conditions, and then use 
the revised model for future what-if scenarios.  Had such an approach been used for these data, 
the scenarios would have had an APE between 27 and 29, which is tolerable considering the 
variability of crash data.  This site-specific adjustment is the procedure specified by Gluck et al.3 

 
The results shown in Table 6 used the first period for each segment as the base year for 

fitting the models.  To test the sensitivity of Table 6 results to the base year, Model 5 was 
reapplied using the second period for each segment as the base year to predict crashes during the 
remaining periods for the segment.  The procedure was then repeated using the third and fourth 
periods as the base period; the APEs were 29, 39, and 30, respectively.  Although selection of the 
base period does affect the APEs, these Model 5 results suggest that the range is still between 27 
and 39 percent.  The test using the fourth period as the base year excluded the second segment of 
Corridor II (Cases 14-16) since the segment had only three periods. 
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Table 6.  Average Percent Error for Models 3 and 5, With and Without Modification 
Modification Used Model 3a Model 3b Model 3c Model 5 
Nonea 198 155 141 217 
Fit the model to each site  27 29 27 27 

     aModel 3 was intended to be applied as shown in the bottom row (i.e., with the model being fit to each 
site).   

 
 
Sensitivity 
 
 Another way to evaluate a model is to examine its sensitivity, i.e., how it responds to 
changes in data inputs.  All five models use ADT and some measure of signalized and/or 
unsignalized access density, but some explicitly consider other variables such as median type, 
land use, presence of residential driveways, and presence of left-turn lanes.  Changes to these 
variables can have a significant or virtually no impact on the number of predicted crashes, 
depending on the model.   
 
 
Sensitivity to ADT 

 
An increase in ADT for Models 1 and 3 had a proportional impact on the number of 

crashes; e.g., an increase of 50 percent in ADT will increase the number of predicted crashes by 
50 percent.  This was not the case for Models 2 and 4.  The impact is nonlinear for Model 2.  The 
exponents shown in Model 2 render the between-signal submodel less sensitive to ADT for 
corridors with a median or TWLTL treatment:  a 50 percent increase in ADT causes a 45 percent 
increase in predicted crashes.  For an undivided segment with a residential or industrial land use, 
a 50 percent increase in ADT causes a 119 percent increase in predicted crashes.  For the signal 
submodel, the relationship between an increase in ADT and the number of crashes is also 
nonlinear:  a 50 percent increase in ADT can increase the number of predicted crashes between 
52 and 54 percent if the values for the number of entering vehicles at a signal are realistic. 
 

Models 1 and 2 predict the number of crashes for a segment, whereas Models 3 and 4 
predict the crash rate where the rate is defined as the number of crashes divided by 100 million 
VMT.  Consequently, to apply Models 3 and 4, one must multiply the crash rate by the VMT 
where VMT is the product of ADT, the number of days for the study period, and the length of 
the segment.  This distinction becomes important because in the case of Model 4, where ADT is 
first used to determine crash rates and then to determine VMT, a small increase in ADT can 
cause a surprisingly large change in the number of crashes without increasing the crash rate 
significantly.  For example, depending on the conditions, a 50 percent increase in ADT will 
result in a 60 percent increase in the predicted number of crashes and a 7 percent increase in the 
predicted crash rate.  

 
 
Sensitivity to Median Type 
 

Each model treats median type differently.  With Model 1, changing a section from 
undivided lanes to a TWLTL or median treatment will consistently reduce predicted crashes by 
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53 and 45 percent, respectively.  This is evident from the exponent in the model structure.  For 
Model 2, these reductions are 2 and 26 percent, respectively, for a particular segment. Unlike 
Model 1, these reductions can be determined only on a case-by-case basis.  The lookup tables 
summarizing Models 3a and 3b indicate that on average, a TWLTL and non-traversable median 
should reduce predicted crash rates by 20 and 40 percent, respectively.  Yet, the developers of 
Model 3 point out that median impacts cannot be considered in isolation from access:  when the 
number of access points is large (e.g., more than 60/mi, or 96/km), a TWLTL reduces the 
predicted crash rate by only 4 percent and a median reduces it by 43 percent.  Model 4 does not 
explicitly consider the median type but does include a potentially correlated variable, the left-
turn lane availability, which can reduce a predicted crash rate by as much as 514.5 crashes per 
100 million VMT. 
 

Because of its structure, one component of Model 2 can have surprising results.  For the 
first study section that was undivided, business land use prevailed, meaning that the variables Iri 
and Ibo were 0 and 1, respectively.  Had these models been applied to a corridor with identical 
geometric characteristics but different land uses such that the variables were reversed, however, 
Model 2 would have predicted different crash reductions that varied with each case.  In fact, with 
a substantially lower ADT on the segment (e.g., 10,000) and only a residential land use, the 
model predicted lower crash rates for an undivided segment than for a segment with a raised curb 
median or TWLTL, although boundary conditions may play a role. 

 
 

Sensitivity to Signalized and Unsignalized Access 
 

The number of access points for a corridor is included in each model.  It is, thus, 
appropriate to study the sensitivity of the models to changes in the number of access points by 
testing with a specific example of how changes in access affect the model predictions.  Table 7 
illustrates how the number of predicted crashes would change based on doubling or tripling the 
signal density and unsignalized density, assuming all other variables are held constant, for a 
particular base case.  Model 3a required interpolation as values for TWLTL segments with a very 
low signal density are not given.  

 
 
 

Table 7.  Percentage Increase in Number of Crashes or Crash Rates Because of Increase in Access Density  
Using Case 1 as Base Case 

Action Model 1 Model 2 Model 3a Model 3b Model 3c Model 5 
Double unsignalized  
access points  

24 3 48 0 13 38

Triple unsignalized  
access points  

64 6 83 0 27 67

Double number of  
signals  

19 58 4 0 0 3

Triple number of  
signals  

39 117 8 0 0 7

 
 



 19

Case 1 was used as the base case since most models performed best for this case.  
However, two factors affecting the sensitivity of the models to the changes in access density 
need clarification:  model structure and the specific case section.  Model 3b, of course, is not 
affected by changes in the number of unsignalized access points.  A graphic for Model 3c (which 
shows the influence of the number of signals and unsignalized access points on crash rates) and 
the table for Model 3b do indicate that signal density influences crash rates; however, in both 
cases, signal density is categorized, e.g., less than 2.0 signals per mile (3.2 per kilometer), 2.1 to 
4.0 signals per mile (3.4 to 6.4 per kilometer), 4.1 to 6.0 signals per mile (6.6 to 9.6 per 
kilometer), and more than 6.0 signals per mile (9.6 per kilometer).  For this section of Case 1, the 
signal density was so low that a doubling and tripling of signals did not always affect the number 
of crashes predicted.  In lieu of Table 7, examination of the graphic associated with Model 3c 
suggests that if one moves from the “less than 2.0 signals per mile” to the category “2.1–4.0 
signals per mile,” predicted crash rates increase by approximately 64 percent assuming the 
unsignalized access density shown for Case 1. 
 

The percentages for Model 4 were negative because a negative number of crashes was 
forecast for the base case.  Figure 5, which graphs the response of Model 4 to changes in access, 
is more illustrative.  Figure 5 indicates only signals (counted as two access points for Model 1 or 
one access point for Model 4); the remainder of the accesses are unsignalized access points.  
Using conditions similar to those for Case 1 as a baseline, Figure 5 shows that although the 
number of access points increases the number of predicted crashes, the impact of an increase at 
the number of accesses is more dramatic when there are fewer access points.  Figure 5 shows the 
opposite effect for Model 1.  For Model 1, an increase in the number of access points initially has 
a small effect on the number of predicted crashes; however, as the number of access points 
increases, each additional access point has a greater effect on the number of predicted crashes.  
In this particular case, the proportion of left-turn lanes was kept constant for Model 1. 
 

These two models perform differently since they were developed with different types of 
roadways.  Further, the curves in Figure 5 extend beyond some of the boundary conditions for 
Model 4.  Thus, Figure 5 illustrates two contrasting views about the impact of an additional 
access point on the predicted number of crashes.  Clearly, for each model, the effect of a single 
additional signal is not uniform but rather can be great or little depending on the number of 
signals already in place in the corridor. 

 
 
Ease of Application 
 

A key factor that determines the usefulness of a model is the ease with which data can be 
obtained and the results interpreted. 

 
 
Data Collection 
 
 The models are similar in that they require the number of unsignalized access points 
(except Model 3b), roadway segment length, ADT, and (except for Model 3c) median treatment 
type or the presence of left-turning lanes, all of which can be obtained relatively easily.  Models 
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3a, 3b, and 3c require the least amount of data, and Model 2 requires additional land use and 
residential driveway data.  Model 4 requires another variable:  the spacing of individual 
driveway segments, which may require considerable effort to obtain.  This requirement in itself 
is not a reason to reject Model 4, however, as roadway data become more easily available (e.g., 
in an automated GIS format).  Thus, with the exception of the driveway spacing variable 
required for Model 4 and the land use data and residential data required for Model 2, the data 
requirements of the models are similar. 
 
 
Computation 
 

Once the data have been collected, there is a considerable variation in the ease with 
which each model can be applied.  Models 3a, 3b, and 3c are easier to apply since they require 
that values be looked up in a graph or table.  Models 1 and 4 require slightly greater effort but 
are still practical since one equation of several independent variables can be applied.  Model 2 is 
the most labor intensive since applying a single equation to a corridor segment is not possible.  
Instead, an equation is applied to each segment within the corridor that is between two signals, 
and then the second component of Model 2 is applied to the signals themselves.  The result is 
that for cases where there are five signals, 10 equations are needed for Model 2 and only 1 
equation is required with Model 1 or 4.  This in itself is not a reason to discount Model 2, for the 
equations can be placed in a spreadsheet, but it does mean that Model 2 requires substantially 
more effort to implement. 
 

Boundary conditions also place limitations on the transferability of a model.  One reason 
Model 3a may not have performed quite so well is that for the TWLTL sections on Corridor I, 
total access density was so low that it was outside the range of Model 3a in some instances.  
Another reason is that data were used from several states but excluded Virginia.3  However, as 
shown previously, simple site-specific modifications, as suggested by the developers of Model 3, 
render these models usable. 

 
 

Interpretation 
 

The ease in which the models can be interpreted varies considerably.  The tables in 
Model 3 are the most straightforward, since the impacts of changing access density or median 
type are readily evident.  Model 1, which consists of a single equation, can also be readily 
understood and explained.  Changing a segment from median to TWLTL produces values that 
are quickly understood.  Similarly, the use of only one equation in Model 4 renders it 
understandable.  The only exception is the use of ADT in the computation of crash rate; as stated 
earlier, the use of ADT in a crash rate combined with the use of ADT to determine VMT can 
have surprising effects.  Additionally, the variable “average difference in driveway spacing” is 
harder to follow.  Finally, the use of a different equation for each median type in Model 2 can 
make visualizing the impacts of each type of treatment harder, although this can be overcome 
through the use of sensitivity analyses offered by the developers of the model.9  
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Conveyance of Results  
 

The focus of each model is different.  For example, Model 2 accounts for the number of 
residential driveways whereas the other models do not; Model 3c does not account for median 
treatments, but Models 3a and 3b do.  Differences in definitions are also appropriate to 
remember.  For example, a signal at a four-way intersection is usually counted as two access 
points, but this was not the case for Models 3b and 3c, which used the number of signals per 
mile.  In addition, a signal counts as one access point when “signalized access density” is 
computed.3  Not all models differentiate between signalized and unsignalized access points.  
Finally, the signals at the endpoints were not included in the segments within the signal density 
computations, and some might argue that this should have been done (although it would have 
increased the number of predicted crashes, which already tended to be too high, for these 
corridors).  Appendix B illustrates that with Model 5, this decision affects the number of 
predicted crashes for the corridors by an average of 3 percent.  In hindsight, computations would 
have been cleaner had corridors been selected such that the boundary was set some distance 
away from the last signal rather than at the signal itself. 
 

Finally, model performance can become a relevant issue if citizens or officials want to 
challenge the results a model portrays.  Models 1 and 2 are the most accurate in terms of 
predicting the actual number of crashes without using a modification step.  The advantage, 
therefore, of using either model is that one can state the model is being applied “as it was 
originally developed”—without modification. 
 

Should data needs or poor performance at other sites necessitate that other models be 
considered, accuracies of between 27 and 29 percent can be obtained, with a modification step at 
each site, using Models 3 and 5.  Although some modelers may argue that this compromises the 
integrity of the model, such compromises are still reflected in these relatively low error rates. 
 
 
Summary 

 
Some of the models can estimate crashes reasonably well as a function of access.  Models 

3a, 3b, 3c, and 5, when applied according to the approach recommended by Gluck et al. where 
one uses a site-specific adjustment, estimated crashes on average within 27 percent and 29 
percent of the correct value.  Model 1, when unmodified, gave average percent errors of 34 
percent.   

 
Some of the models are practical enough such that they can be applied without extensive 

data collection.  Although Model 2 requires substantial effort, Models 1, 3, 5, and a slightly 
modified version of Model 4 use data elements that are reasonable to obtain.  Models 3 and 5 
require the least data and are the easiest to apply.  It is the authors’ subjective opinion that the 
data elements required for Models 1, 3, and 5 are easier for a layperson to understand then a few 
of the data elements for Models 2 and 4, although that view has not been verified by a sample of 
laypersons.  Further, this last issue is relatively minor and could be overcome with additional 
explanation or public education efforts as to the meaning of the additional data elements in 
Model 2 and Model 4. 
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DISCUSSION 
 

It is probably not possible to select a model that has been developed elsewhere, apply it 
with the given parameters, and expect it to produce results that replicate crash history at another 
location.  There are several reasons for this: 

 
• Assumptions under which data are collected and categorized may vary.  Although not 

an issue with these particular corridors, it is possible that the land use classification 
(e.g., whether industrial and commercial should be in the same category) or even 
whether the data element should be used in a model can vary among states.  Another 
data issue is whether the value for TWLTL should be restricted to 0 or 1 (denoting 
whether a two-way left turn lane is present or not) or whether the TWLTL can be a 
decimal number between 0 and 1 (e.g., 0.5 for a corridor that is TWLTL for half its 
length).  Had the value of TWLTL been changed to this second representation, Model 
1 would not have performed as well as Model 2 for Corridor I (although the 
differences would not have been significant).  Interpretation of the variables can be 
quite difficult. 

 
• Models are calibrated to specific data sets.  Not all models are based on the same 

amount of data, e.g., Model 3 was based on data from several states.  Still, it appears 
that each model was built based on a particular set of data.  For example, Model 5 
indicates a lower crash rate for four-lane urban arterial roadways without left-turn 
lanes than for those with left-turn lanes.  Yet, as suggested by Model 4, left-turn lanes 
should reduce crash rates if all other characteristics are equal.  Since Model 5 was 
calibrated based on the experience of one state, it is possible that sites without left-
turn lanes in the state might have benefited from other characteristics (such as 
coordinated signal timing) that might have reduced crash risk. 

 
• The base data sets may reflect different degrees of driver risk.  It is possible, for 

example, for two cities to have the same number of signals per mile yet have 
differences in crash rates because of other factors, such as the progression of the 
signals, the behavior of the driving population, and the amount of law enforcement, 
none of which is reflected in the models tested. 

 
• There is inherent variability in crash rates from year to year.  This natural variation 

will prevent a model from perfectly forecasting the number of crashes. 
 
• Error checking is required.  It is essential to avoid data entry errors in order to apply 

the models correctly.  Experience has demonstrated that it is very easy to make 
mistakes when there are many inputs that propagate throughout the individual 
submodels.  

 
Although Models 1 and 2 performed the best for the particular corridors employed, other 

factors should be considered when choosing a model:  transparency, feasibility, and the ability to 
fit the model to the data collected.  Fortunately, as was demonstrated with Models 3 and 5, one 
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minor site-specific modification increased the accuracy of the models such that they could be 
used. 
 

However, it is not correct to assume that the predictive capabilities of the models are 
reflected solely by their ability to predict the number of crashes.  First, the number of crashes is 
not the only measure of safety at an intersection:  Helman pointed out that operational effects 
such as speed variance and observed numbers of conflicts can also serve as indicators of safety 
(along with the warning that one should be skeptical of statistical correlations without an 
understanding of the underlying operations).17  Second, crashes themselves are rare events.  
Thus, although Models 1 and 2 clearly outperformed the other models for this particular 
segment, it is also appropriate to consider other measures of model utility in addition to the 
ability to predict the number of crashes.  Third, model structures themselves are different:  a 
model that uses only a few variables and is based on a large data set, for example, would seem 
more easily transferred than a model fit to many independent variables and based on a small data 
set.  However, the testing of models with data sets different than those with which they were 
constructed can highlight the transferability of the models, as was done with three corridors in 
this effort. 

 
Of persons who have reviewed this work, two opposing schools of thought have emerged 

with respect to the evaluation of the models.  One school argues that one should apply only a 
model without a site-specific adjustment (e.g., Model 1) in order to use the predicted nonlinear 
response, such as that shown in Figure 5, correctly.  An opposing school is that these models are 
really intended to be used only with site-specific adjustment (e.g., Model 3).  For both 
paradigms, however, the impact of the errors is reflected in the test cases presented here, where 
test data that are different from model training data are used to truly evaluate the model on a new 
set of conditions.  The results show that for both viewpoints, the error rates are still between 27 
percent and 34 percent, even though the application of the model does not meet a measure of 
rigor expressed by one of the schools of thought. 

 
 
 

CONCLUSIONS 
 
1. Without site-specific modification, the accuracy, in terms of being able to predict the actual 

number of crashes, is quite variable for the different models.  Error rates ranged from 34 
percent for Model 1 to a few hundred percent for Model 4.  Possible reasons for this 
discrepancy between the model’s predictions and reality include different paradigms inherent 
in the model, variance in how data elements are defined from one location to another, and 
application of the model for conditions that are beyond the range for which the model was 
initially calibrated.  Model 1 had the lowest average percent error rate whereas Model 2 had 
the lowest mean absolute error.  Table B-3 in Appendix B illustrates how this can occur. 

 
2. With a simple site-specific modification, the accuracy of the models can be increased 

substantially.  Site-specific adjustment reduced error rates from approximately 200 percent to 
between 27 percent and 29 percent for the models tested.  As suggested in by Gluck et al. and 



 24

in the section that follows, these modifications are not as labor intensive as recalibrating the 
models. 

 
3. The data collection needs vary for the models.  To illustrate, one may consider the input 

required for one particular variable:  the number of unsignalized access points.  Model 1 
requires the number of unsignalized streets.   Model 2 requires the number of unsignalized 
streets plus the number of unsignalized residential driveways.  Model 4 requires the 
individual spacing between each unsignalized street (but elimination of this variable seemed 
acceptable). 

 
4. The computations required for each model vary from the simple to the complex.  Models 3a, 

3b, and 3c can be applied by simply using a lookup table or graphic.  Model 1 requires more 
calculations but can be applied for an entire corridor.  Model 2 requires a series of sub-
calculations first for the portions of the corridor between each signal and then for the signals 
themselves, such that Model 2 at a particular site required 10 separate equations compared to 
a single equation for Model 1.   

 
5. The paradigms reflected in the models are different, and may not apply to another location.  

For example, the Model 1 suggests that a TWLTL treatment will decrease crash risk slightly 
more than does a median treatment.  Models 2 and 3 suggest that a median treatment has a 
far greater crash reduction impact than the TWLTL treatment.  Probably the TWLTL 
treatments for Model 1 were a surrogate for other factors that reduce crash risk, such as 
reduced speeds.  Yet, all of the models generally suggest that an increase in signal density or 
unsignalized driveways will lead to an increase in crash risk.  The differences are in the 
extent to which these spacings influence crash risk.  Figure 5 indicates that, as the number of 
access points increases, one model presumes a gradual increase in crash rates whereas 
another model presumes a sharper increase. 

 
6. Corridor I implies no significant change occurs as a result of slightly increasing access when 

access is already low.  The corridor in question went from a very low number of access 
points per mile to a moderate number of access points per mile, and the number of crashes 
increased only slightly and non-uniformly, as shown in Table 2.  By extension, there exists a 
need to be able to evaluate microscopically the safety impacts of small changes in access, 
given that state DOTs often face access management decisions, such as the granting or 
denying of direct access by a business, on a case-by-case basis. This particular corridor 
follows the same line of thought suggested in Model 1. 

 
7. Judgment or consistency is required to interpret the application of the models.  For example, 

should a four-way unsignalized intersection be considered as one or two access points?  
Although each model in Appendix A has a strict definition that can be applied, it can be 
argued that the interpretation should be made on a case-by-case basis.  As an illustration, 
consider the northbound direction only:  if the turning movements associated with the 
westbound access point will affect northbound traffic, then certainly such an access has more 
conflict points than if it only affects southbound traffic.  In hindsight, therefore, although 
application of these models is a good first cut, there may not necessarily be a uniform 
interpretation for all situations.  In that event, consistency is a good remedy:  if the number of 
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conflict points were used as a weighting factor in determining the number of access points 
for one corridor, then either repeat the same procedure in other areas or do not use it all.  
Although the latter tack was used in this research, either approach, if applied consistently 
over time, should give a clearer indication of whether model predictions are accurate. 

 
 

 
RECOMMENDATIONS 

 
The study results indicate that using existing traffic data, one can estimate crashes within 

27 to 34 percent of the actual number.  To do this in practice, the following five steps are 
recommended.  These steps are not intended to replace a research effort that builds a model from 
primary data, but they can enable practitioners to apply models developed elsewhere. 
 

1. Select a practical model.  As an illustration, Model 5 meets this test:  it relies on data 
elements that can be collected relatively easily, it uses one basic equation per 
segment, the meanings of the variables are explained sufficiently, and it does not 
have nonlinearities that restrict its application.   

 
For a four-lane urban arterial roadway with left turning lanes, Model 5 is given as: 

 
Accident rate = exp (0.12) • (access density)(0.49) 

 
2. If necessary, fit the model to a particular study site.  Overall, Model 1 performed 

adequately without modification for the two corridors selected.  However, accuracy 
can be improved by fitting Model 5 (or another model being used) to a specific site, 
using a method given by Gluck et al.3 as illustrated in Step 3. 

 
For example, a four-lane urban arterial roadway with left-turning lanes may have 
these base data: 

 
• 1.58 mi in length (2.5 km) 
 
• 27 unsignalized access points + 1 signal at a four-way intersection = 29 access 

points 
 
• 29,411 ADT 
 
• 54 crashes observed over a 1.3-year period. 

 
 The actual crash rate is computed as 
 

(54 )(1,000,000)
(29,411 / )(1.3 )(365 / )(1.58 )

crashes
vehicles day years days year miles

 

 
= 2.45 crashes/million VMT = 1.53 crashes/million VkmT. 
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 Model 5 computes the crash rate as 
 

 = exp (0.12) • (29 access points/1.58 miles)(0.49) = 4.69 crashes/million VMT 
 

= 2.93 crashes/million VkmT. 
 

Because this error is so large, for future use, the model should be fit to the specific 
site. 

 
3. Apply the model consistently.  Considerable judgment must be exercised, and for 

some situations, such as when a model indicates “use 0 or 1 to indicate TWLTL 
availability,” it was not always clear what the proper interpretation of the variable 
should be for a particular real-world situation.  The approach used herein was to at 
least be consistent in how the model is applied:  thus, if values of 0 or 1 were strictly 
used for a particular variable on a corridor, then the same convention should be used 
on other corridors. 

 
 For example, suppose the safety impact of doubling the number of access points 

from 29 to 58 is to be assessed.  Then, because the model should be fit to the specific 
site, compare the change in crashes, as in: 

 
 (0.49)

(0.49)

exp (0.12)  (29 access points/1.58 miles)  (54  ) 76  
exp (0.12)  (58 access points/1.58 miles)  

crashes originally crashes now=  

 
 For computational purposes, an alternative approach would be to multiply the 

number of access points by 0.21 and then apply the model directly, as in 
 

Accident rate = exp (0.12) • (0.21 • access density) (0.49) 
 
 since the factor of 0.21 enables the model to predict crashes perfectly for the original 

base data.  (This alternative has some value in that it can simplify the computations 
slightly, but in some cases, it may increase the APE.) 

 
4. Acknowledge the error rates based on prior experiences with the model.  Model 1 

had an APE, without site-specific modification, of approximately 34.  Models 3 and 
5, with site-specific calibration, yield APEs of 27 to 29.  Thus, up front, these 
methods cannot forecast crashes perfectly (nor should they, since crashes have 
inherent variability). 

 
 For example, it should be indicated that: 
 
 “We estimate that, on average, doubling the access density will increase crashes 

from 54 to 76 assuming the same time period and the same VMT.  However, 
because of a historical average percent error of about 27 percent when using this 
method, the range of estimated crashes is presented as  
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 76 � 27 percent, or between 55 and 97 crashes for that same time period.” 
 
5. Realize the limitations of this approach.  These methods can be applied 

macroscopically for a corridor to yield a quick estimate of the impacts of increasing 
the number of signals on crashes.  They cannot replace a more detailed study that 
would investigate specific considerations such as signal progression, grade, turning 
movements, volume distribution by lane, crash severity, and crash type (e.g., angle 
crashes may be much more severe than rear end crashes). 

 
 For example, one should note that: 
 
 “Although this illustration explains how increasing access density will increase 

crashes, it does not consider the benefits that may result from signalizing some of the 
unsignalized access points if such changes will reduce the number of angle crashes 
in favor of increased rear end crashes.” 

  
 

 
SUGGESTIONS FOR FURTHER RESEARCH 

 
1. Continue to assess the utility of access management models for other corridors.  This study 

presents a reproducible method for evaluating these types of models.  VDOT staff who use 
these models and find different results from those presented herein should indicate such 
results to the VDOT Access Management Committee.  The committee is a good forum for 
determining whether the average percent errors (currently thought to be 27 to 34 percent) are 
acceptable.  The results of VTRC’s expected future effort to devise a simple automated 
approach for applying a few of these models should also be presented to this committee. 

 
2. If technically feasible, devise a software subroutine to archive the date and extent of 

permanent changes to roadway access.  VDOT has an information system that stores the date 
an access permit was granted and the date the permit was closed, but it is cumbersome to 
separate permits that result in an access change (e.g., construction of a driveway for a 
business) and those that reflect temporary work (such as laying underground cable); 
furthermore, the date of the change is not always clear.  If possible, a software subroutine 
that indicates the history of access changes to key arterial roadways would assist a VDOT 
access management program with evaluating how changes in access affect safety and 
operations. 

 
3. Investigate the use of simulation models to increase the accuracy of a model.  Operational 

parameters that can be observed by simulation or direct field study, such as queue length, 
speed variance, expected number of lane changes, volume-to-capacity ratio, average percent 
of stopped vehicles, and traffic conflicts (e.g., near misses, activation of brake lights) may be 
surrogates for safety.4,18  The fact that some researchers have noted a sharp nonlinear 
increase in crash risk when a certain threshold of access is exceeded suggests that simulation 
models may be an appropriate means to determine this breakpoint.19 
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